uzluga.ru
добавить свой файл
Ф КГМУ 4/3-04/02

ИП № 6 УМС при КазГМА

от 14 июня 2007г.


Карагандинский государственный медицинский университет




Кафедра: Гистологии


ЛЕКЦИЯ


Тема: «Мышечные ткани: гладкая и сердечная»


Дисциплина: гистология-1


Специальность: 5В130100 – «Общая медицина» (бакалавриат)


Курс: 2

Время (продолжительность): 1




Караганда 2012г.

Обсуждены и утверждены

на заседании кафедры гистологии


Протокол № 4 от 03.09.2012 г.


Зав. кафедрой Есимова Р.Ж.


Тема: «Мышечные ткани: гладкая и сердечная»


Цель: Ознакомить студентов с гистофизиологией гладкой и сердечной мышечными тканями.


План лекции:

  1. Гладкие мышечные ткани

    1. Гистогенез

    2. Строение

    3. Регенерация

  2. Сердечная мышечная ткань

    1. Гистогенез

    2. Строение

    3. Регенерация


Гладкие мышечные ткани.

ГИСТОГЕНЕЗ. Источником развития гладкой мышечной ткани является в основном спланхнотомная мезенхима. Ее клетки мигрируют и окружают эпителиальные зачатки тех органов, в состав которых входит гладкая мышечная ткань Начало дифференцировки гладкой мышечной ткани характеризуется удлинением мезенхимных клеток и превращением их из звездчатых в веретеновидные. В цитоплазме клеток появляются органеллы белкового синтеза, осуществляющие синтез специфических белков миофибрилл. Из этих белков производится сборка большого количества миофибрилл, и клетки начинают реагировать на раздражение сокращением. Часть клеток остается в малодифференцированном состоянии и служит источником для регенерации.

СТРОЕНИЕ. Во взрослом организме гладкая мышечная ткань входит в состав стенки органов пищеварительного тракта, образует мышечные оболочки кровеносных и лимфатических сосудов, бронхиального дерева, яйцеводов, матки, мочеточников, мочевого пузыря, входит в состав капеллы селезенки, есть в эндокарде. Гладкая мышечная ткань стенки сосудов по ряду морфофункциональных признаков отличается от гладкой мышечной ткани другой локализации.

Структурно-функциональным тканевым элементом ткани является гладкий миоцит (иногда в качестве второго тканевого элемента называют межклеточное вещество, которое способны синтезировать миоциты). Гладкий миоцит — клетка веретеновидной формы, длина можем быть от 20 до 500 мкм, как, например, в матке, в мышечной оболочке которой миоциты имеют также особую (звездчатую) форму. Ядра клеток палочковидной или эллипсоидной формы, с плотным хроматином и 1 - 2 ядрышками. Гладкий миоцит покрыт цитолеммой. Снаружи от нее лежит тонкая базальная мембрана с ретикулярными фибриллами, которая ограничивает каждый гладкий миоцит от соседних миоцитов.

В цитоплазме гладких миоцитов имеются все органеллы общего назначения, лежащие в околоядерных участках цитоплазмы: гранулярная ЭПС, выполняющая синтез белков межклеточного вещества, комплекс Гольджи, митохондрии, многочисленные пузырьки, лежащие под цитолеммой (кавеолы) и открытые в сторону межклеточной среды. Этот везикулярный аппарат депонирует ионы Са2+, необходимые для сокращения, и является аналогом одновременно и саркоплазматического ретикулума (СПР), и Т-трубочек в исчерченной мышечной ткани. В миоците имеются также и элементы редуцированного саркоплазматического ретикулума в виде пузырьков и небольших цистерн. С ними кавеолы могут иметь связи. Кавеолы и СПР содержат в своей мембране белки транспорта кальция. В цитоплазме гладких миоцитов есть включения гликогена.

На периферии миоцитов под их цитолеммой находятся плотные тельца, состоящие из белка -актинина — аналоги Z-линий саркомеров (см. ниже). Есть две разновидности плотных телец: 1) связанные с внутренней поверхностью плазмолеммы (сарколеммы) миоцита при помощи комплекса адгезивных белков (винкулина, тензина и др.). Эти плотные тельца на самом деле представляют собой срезанные поперечно пластинки, имеющие вид длинных непрерывных ребер, которые лежат параллельно друг другу под сарколеммой; 2) свободно лежащие в цитоплазме (саркоплазме). Лежат в виде правильной цепочки. К плотным тельцам прикрепляются актиновые и промежуточные десминовые филаменты. Последние образуют сложную трехмерную сеть в саркоплазме.

Важный компонент цитоплазмы гладких миоцитов — сократительные белковые нити, или миофиламенты, образующие миофибриллы. Эти нити расположены вдоль длинной оси миоцита, а по отношению друг к другу так, что не образуют поперечной исчерченности. Тонкие актиновые миофиламенты одним концом прикрепляются к плотным тельцам. Они в отличие от скелетной мышечной ткани состоят только из белка актина (мышечного и немышечного), не содержат тропонина и тропомиозина и более многочисленны. Актиновые филаменты взаимодействуют с толстыми миозиновыми филаментами, образуя так называемые сократимые единицы. В отличие от миозиновых филаментов скелетной мышечной ткани миозиновые филаменты гладких миоцитов менее стабильны, а по мнению некоторых исследователей, молекулы миозина в состоянии покоя находятся в деполимеризованной форме, и миозиновые филаменты организуются путем сборки непосредственно перед сокращением, вновь распадаясь после него. Поэтому в гладких мышечных тканях не формируются миофибриллы, саркомеры и отсутствует поперечная исчерченность. Сборка из молекул миозина толстых миозиновых филаментов происходит при инициации сокращения, и этот процесс, а также взаимодействие актиновых и миозиновых филаментов активируют ионы кальция, поступающие из кальциевых депо — СПР, кавеол и митохондрий. Образующиеся сократительные единицы направлены под углом к длине миоцита.

Гладкие миоциты функционируют не изолированно, а формируют миоцитарные комплексы. Нервные окончания подходят не ко всем миоцитам. а только к одному в комплексе. Комплекс состоит из 10—12 миоцитов. В составе комплекса миоциты тесно взаимодействуют друг с другом при помощи десмосом и нексусов — щелевых контактов. В области нексусов базальные мембраны миоцитов прерываются. Через нексусы происходит передача возбуждения от одного миоцита к соседним, и в результате сокращением охватывается весь комплекс

В состав миоцитарного комплекса входят несколько различающихся по функции миоцитов. 1. Сократительные миоциты преимущественно

выполняют сократительные акты. 2. Секреторные миоциты синтезируют и секретируют межклеточное вещество. 3. Миоциты-пейсмекеры генерируют потенциал действия и передают его на соседние клетки. 4. Камбиальные (малодифференцированные) миоциты служат источником регенерации мышечной ткани.

Имея мезенхимное происхождение, гладкие миоциты генетически очень близки фибробластам и другим аналогичным клеткам-продуцентам межклеточного вещества: они способны к синтезу собственного межклеточного вещества гладкой мышечной ткани, которое иногда рассматривают как второй тканевой элемент гладкой мышечной ткани.

Регенерация гладкой мышечной ткани происходит не только за счет малодифференцированных клеток, но и за счет адвентициальных клеток (возможно, за счет перицитов), а при повреждении — за счет миофибробластов в силу их близкого генетического родства. Возможна и внутриклеточная регенерация гладких миоцитов, основанная на восстановлении органелл их гипертрофии и гиперплазии.


Сердечная мышечная ткань

Источником развития сердечной мышечной ткани является миоэпикардиальная пластинка — часть висцерального спланхнотома в шейном отделе зародыша. Ее клетки превращаются в миобласты, которые активно делятся митозом к дифференцируются. В цитоплазме миобластов синтезируются миофиламенты, формирующие миофибриллы. Вначале миофибриллы не имеют исчерченности и определенной ориентации в цитоплазме. В процессе дальнейшей дифференцировки принимают продольную ориентацию и тонкими миофиламентами прикрепляются к формирующимся уплотнениям сарколеммы (Z-вещество).

В результате все возрастающей упорядоченности миофиламентов миофибриллы приобретают поперечную исчерченность.

Образуются кардиомиоциты. В их цитоплазме нарастает содержание органелл: митохондрий, гранулярной ЭПС, свободных рибосом. В процессе дифференцировки кардиомиоциты не сразу теряют способность к делению и продолжают размножаться. В некоторых клетках может отсутствовать цитотомия, что ведет к появлению двуядерных кардиомиоцитов. Развивающиеся кардиомиоциты имеют строго определенную пространственную ориентацию, выстраиваясь в виде цепочек, и образуя друг с другом межклеточные контакты — вставочные диски. В результате дивергентной дифференцировки кардиомиоциты превращаются в клетки трех типов: 1) рабочие, или типичные, сократительные; 2) проводящие, или атипичные; 3) секреторные (эндокринные). В результате терминальной дифференцировки кардиомиоциты к моменту рождения или в первые месяцы постнатального онтогенеза теряют способность к делению. В зрелой сердечной мышечной ткани камбиальные клетки отсутствуют.

Сердечная мышечная ткань образована клетками кардиомиоцитами. Кардиомиоциты являются единственным тканевым элементом сердечной мышечной ткани. Они соединяются друг с другом при помощи вставочных дисков и образуют функциональные мышечные волокна, или функциональный симпласт, не являющийся симпластом в морфологическом понятии. Функциональные волокна разветвляются и анастомозируют боковыми поверхностями, в результате чего образуется сложная трехмерная сеть.

Кардиомиоциты имеют вытянутую прямоугольную слабоотростчатую форму. Они состоят из ядра и цитоплазмы. Многие клетки (более половины у взрослого индивидуума) являются двуядерными и полиплоидными. Степень полиплоидизации различна и отражает адаптивные возможности миокарда. Ядра крупные, светлые, находятся в центре кардиомиоцитов.

Цитоплазма (саркоплазма) кардиомиоцитов обладает выраженной оксифилией. В ней содержится большое количество органелл и включений. Периферическую часть саркоплазмы занимают расположенные продольно исчерченные миофибриллы, построенные так же, как в скелетной мышечной ткани. В отличие от миофибрилл скелетной мышечной ткани, лежащих строго изолированно, в кардиомиоцитах миофибриллы нередко сливаются друг с другом с образованием единой структуры и содержат сократимые белки, химически отличающиеся от сократимых белков миофибрилл скелетных мышц.

СПР и Т-трубочки развиты слабее, чем в скелетной мышечной ткани, что связано с автоматией сердечной мышцы и меньшим влиянием нервной системы. В отличие от скелетной мышечной ткани СПР и Т-трубочки образуют не триады, а диады (к 1-трубочке прилежит одна цистерна СИР). Типичные терминальные цистерны отсутствуют. СПР менее интенсивно аккумулирует кальций.

Снаружи кардиоциты покрыты сарколеммой, состоящей из плазмолеммы кардиомиоцита и базальной мембраны снаружи. Базальная мембрана тесно связана с межклеточным веществом, в нее вплетаются коллагеновые и эластические волокна. Базальная мембрана отсутствует в местах вставочных дисков.

Со вставочными дисками связаны компоненты цитоскелета. Через интегрины цитолеммы они также связаны с межклеточным веществом. Вставочные диски — это место контактов двух кардиомиоцитов, комплексы межклеточных контактов Они обеспечивают как механическую, так и химическую, функциональную коммуникацию кардиомиоцитов. В световом микроскопе имеют вид темных поперечных полосок. В электронном микроскопе вставочные диски имеют зигзагообразный, ступенчатый вид или вид зубчатой линии. В них можно выделить горизонтальные и вертикальные участки и три зоны.

1. Зоны десмосом и полосок слипания. Находятся на вертикальных (поперечных) участках дисков. Обеспечивают механическое соединение кардиомиоцитов

2. Зоны нексусов (щелевых контактов) — места передачи возбуждения с одной клетки на другую, обеспечивают химическую коммуникацию кардиомиоцитов. Обнаруживаются на продольных участках вставочных дисков.

3. Зоны прикрепления миофибрилл. Находятся на поперечных участках вставочных дисков. Служат местами прикрепления актиновых филаментов к сарколемме кардиомиоцита. Это прикрепление происходит к Z-полоскам, обнаруживаемым на внутренней поверхности сарколеммы и аналогичным Z-линиям. В области вставочных дисков обнаруживаются в большом количестве кадгерины (адгезивные молекулы, осуществляющие кальцийзависимую адгезию кардиомиоцитов друг с другом)

Типы кардиомиоцитов. Кардиомиоциты имеют разные свойства в разных участках сердца. Так, в предсердиях они могут делиться митозом, а в желудочках никогда не делятся. Различают три типа кардиомиоцитов, существенно отличающихся друг от друга как строением, так и функциями: рабочие, секреторные, проводящие.

1. Рабочие кардиомиоциты имеют структуру, описанную выше.

2. Среди предсердных миоцитов есть секреторные кардиомиоциты, которые вырабатывают натрийуретический фактор (НУФ), усиливающий секрецию натрия почками. Кроме этого, НУФ расслабляет гладкие миоциты стенки артерий и подавляет секрецию гормонов, вызывающих гипертензию (альдостерона и вазопрессина). Все это ведет к увеличению диуреза и просвета артерий, снижению объема циркулирующей жидкости и в результате — к снижению артериального давления. Секреторные кардиомиоциты локализуются в основном в правом предсердии.

Следует отметить, что в эмбриогенезе способностью к синтезу обладают все кардиомиоциты, но в процессе дифференцировки кардиомиоциты желудочков обратимо теряют эту способность, которая может восстанавливаться здесь при перенапряжении сердечной мышцы.

3. Значительно отличаются от рабочих кардиомиоцитов проводящие (атипичные) кардиомиоциты. Образуют проводящую систему сердца (см "сердечно-сосудистую систему"). Они в два раза больше рабочих кардиомиоцитов. В этих клетках содержится мало миофибрилл, увеличен объем саркоплазмы, в которой выявляется значительное количество гликогена. Благодаря содержанию последнего цитоплазма атипичных кардиомиоцитов плохо воспринимает окраску. В клетках содержится много лизосом и отсутствуют Т-трубочки. Функцией атипичных кардиомиоцитов является генерация электрических импульсов и передача их на рабочие клетки. Несмотря на автоматизм, работа сердечной мышечной ткани строго регулируется вегетативной нервной системой. Симпатическая нервная система учащает и усиливает, парасимпатическая — урежает и ослабляет сердечные сокращения.

РЕГЕНЕРАЦИЯ СЕРДЕЧНОЙ МЫШЕЧНОЙ ТКАНИ. Физиологическая регенерация. Реализуется на внутриклеточном уровне и протекает с высокой интенсивностью и скоростью, поскольку сердечная мышца несет огромную нагрузку. Еще более она возрастает при тяжелой физической работе и в патологических условиях (гипертоническая болезнь и др.) При этом происходит постоянное изнашивание компонентов цитоплазмы кардиомиоцитов и замещение их вновь образованными. При повышенной нагрузке на сердце происходит гипертрофия (увеличение размеров) и гиперплазия (увеличение количества) органелл, в том числе и миофибрилл с нарастанием в последних количества саркомеров. В молодом возрасте отмечаются также полиплоидизация кардиомиоцитов и появление двуядерных клеток. Рабочая гипертрофия миокарда характеризуется адекватным адаптивным разрастанием его сосудистого русла. При патологии (например, пороки сердца, также вызывающие гипертрофию кардиомиоцитов) этого не происходит, и через некоторое время из-за нарушения питания происходит гибель части кардиомиоцитов с замещением их рубцовой тканью (кардиосклероз).

Репаративная регенерация. Происходит при ранениях сердечной мышцы, инфарктах миокарда и при других ситуациях Поскольку в сердечной мышечной ткани нет камбиальных клеток, то при повреждении миокарда желудочков регенераторные и адаптивные процессы идут на внутриклеточном уровне в соседних кардиомиоцитах: они увеличиваются в размерах и берут на себя функцию погибших клеток. На месте погибших кардиомиоцитов образуется соединительнотканный рубец.

В последнее время установлено, что некроз кардиомиоцитов при инфаркте миокарда захватывает только кардиомиоциты сравнительно небольшого участка зоны инфаркта и близлежащей зоны. Более значительное количество кардиомиоцитов, окружающих зону инфаркта, погибает путем апоптоза, и этот процесс является ведущим в гибели клеток сердечной мышцы. Поэтому лечение инфаркта миокарда в первую очередь должно быть направлено на подавление апоптоза кардиомиоцитов в первые сутки после наступления инфаркта.

При повреждении миокарда предсердий в небольшом объеме может осуществляться регенерация на клеточном уровне.

Стимуляция репаративной регенерации сердечной мышечной ткани. 1) Предотвращение апоптоза кардиомиоцитов назначением препаратов, улучшающих микроциркуляцию миокарда, снижающих свертывание крови, ее вязкость и улучшающих реологические свойства крови. Успешная борьба с постинфарктным апоптозом кардиомиоцитов является важным условием дальнейшей успешной регенерации миокарда; 2) Назначение анаболических препаратов (витаминного комплекса, препаратов РНК и ДНК, АТФ и др.); 3) Раннее применение дозированных физических нагрузок, комплекса упражнений лечебной физкультуры.

В последние годы в экспериментальных условиях для стимуляции регенерации сердечной мышечной ткани стали применять трансплантацию миосателлитоцитов скелетной мышечной ткани. Установлено, что введенные в миокард миосателлитоциты формируют скелетные мышечные волокна, устанавливающие тесную не только структурную, но и функциональную связь с кардиомиоцитами. Поскольку замещение дефекта миокарда не инертной соединительной, а проявляющей сократительную активность скелетной мышечной тканью более выигрышно в функциональном и даже в механическом отношении, то дальнейшая разработка этого метода может оказаться перспективной при лечении инфарктов миокарда у людей.


Иллюстративный материал



Литература.

1. Кузнецов С.Л., Мушкамбаров Н.Н. Гистология, цитология и эмбриология: Учеб. для мед. вузов / М.: Медицинское информационное агентство, 2007. – 600 с.

2. Улумбеков Э.Г., Челышев Ю.А. Гистология, эмбриология, цитология: Учебник / М.: ГЭОТАР-Медиа, 2009. - 408 с.

3. Абильдинов Р.Б., Аяпова Ж.О., Юй Р.И. Атлас по гистологии, цитологии и эмбриологии /. – Алматы: Эффект, 2006. - 416 с.

4. Кузнецов С.Л., Мушкамбаров Н.Н., Горячкина. В.Л. Атлас по гистологии, цитологии и эмбриологии: Учеб. пос. для медвузов. / Астана: Астана-Bilding, 2005. - 400 с.

5. Юй Р.И., Абильдинов Р.Б. Атлас микрофотографий по гистологии, цитологии и эмбриологии для практических занятий.-Алматы,- 2010.-232 с.

6. Гарстукова Л.Г., Кузнецов С.Л., Деревянко В.Г. Наглядная гистология (общая и частная): Учеб. пос. для студентов мед. вузов / М. : Мед. информ. агентство, 2008. - 200 с.

7. Бойчук Н.В. и др. Гистология: Атлас для практических занятий / - М.: ГЭОТАР-Медиа, 2008. - 160 с. 50

8. Данилов Р.К. Гистология. Эмбриология. Цитология: Учебник для студентов мед. вузов / М. : Мед. информ. агентство, 2006. - 456 с.

9. Пуликов А.С. Возрастная гистология: Учеб. пособие / Ростов н/Д, Красноярск: Феникс, Издат. проекты, 2006. - 173 с

10. Кузнецов С.Л., Челышев Ю.А. Гистология: Учеб. пособие: Комплексные тесты: ответы и пояснения / М.: ГЭОТАР-Медиа, 2007. - 288 с.


Контрольные вопросы (обратная связь):


  1. Классификация мышечных тканей

  2. Гладкие мышечные ткани

  3. Сердечная мышечная ткань

  4. Общая морфофункциональная характеристика

  5. Регенерация мышечной ткани