uzluga.ru
добавить свой файл
1 2 3 4




ВЕЙВЛЕТНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛОВ

Тема 19. Основы вейвлет-преобразования сигналов.

Ни одна вещь не возникает и не уничтожается, но каждая составляется из смешения существующих вещей или выделяется из них.

Анаксагор. Древнегреческий философ, IV в.д.н.э.


Это точно. Разложением функций еще во II веке занимался Клавдий Птоломей. И наверняка вейвлетным, потому как рядов Фурье не было, Фурье не родился.

Игорь Широков. Московский геофизик Уральской школы, ХХ в.

Содержание:

Введение.

1. Истоки вейвлет-преобразования. Историческая справка. Преобразование Фурье. Оконное преобразование Фурье. Частотно-временное оконное преобразование. Функции оконного спектрального анализа. Принцип вейвлет-преобразования. Вейвлетный спектр.

2. Основы вейвлет-преобразования. Непрерывное вейвлет-преобразование. Понятие масштаба ВП. Процедура преобразования. Обратное преобразование. Дискретное вейвлет-преобразование. Частотно-временная локализация вейвлет-анализа. Образное представление преобразования. Достоинства и недостатки вейвлетных преобразований. Практическое использование.

Введение.

Вейвлетное преобразование сигналов является обобщением спектрального анализа, типичный представитель которого – классическое преобразование Фурье. Термин "вейвлет" (wavelet) в переводе с английского означает "маленькая (короткая) волна". Вейвлеты - это обобщенное название семейств математических функций определенной формы, которые локальны во времени и по частоте, и в которых все функции получаются из одной базовой (порождающей) посредством ее сдвигов и растяжений по оси времени. Вейвлет-преобразования рассматривают анализируемые временные функции в терминах колебаний, локализованных по времени и частоте. Как правило, вейвлет-преобразования (WT) подразделяют на дискретное (DWT) и непрерывное (CWT).

DWT используется для преобразований и кодирования сигналов, CWT - для анализа сигналов. Вейвлет-преобразования в настоящее время принимаются на вооружение для огромного числа разнообразных применений, нередко заменяя обычное преобразование Фурье. Это наблюдается во многих областях, включая молекулярную динамику, квантовую механику, астрофизику, геофизику, оптику, компьютерную графику и обработку изображений, анализ ДНК, исследования белков, исследования климата, общую обработку сигналов и распознавание речи.

Вейвлетный анализ представляет собой особый тип линейного преобразования сигналов и физических данных. Базис собственных функций, по которому проводится вейвлетное разложение сигналов, обладает многими специфическими свойствами и возможностями. Вейвлетные функции базиса позволяют сконцентрировать внимание на тех или иных локальных особенностях анализируемых процессов, которые не могут быть выявлены с помощью традиционных преобразований Фурье и Лапласа. К таким процессам в геофизике относятся поля различных физических параметров природных сред. В первую очередь это касается полей температуры, давления, профилей сейсмических трасс и других физических величин.

Вейвлеты имеют вид коротких волновых пакетов с нулевым средним значением, локализованных по оси аргументов (независимых переменных), инвариантных к сдвигу и линейных к операции масштабирования (сжатия/растяжения). По локализации во временном и частотном представлении вейвлеты занимают промежуточное положение между гармоническими функциями, локализованными по частоте, и функцией Дирака, локализованной во времени.

Теория вейвлетов не является фундаментальной физической теорией, но она дает удобный и эффективный инструмент для решения многих практических задач. Основная область применения вейвлетных преобразований – анализ и обработка сигналов и функций, нестационарных во времени или неоднородных в пространстве, когда результаты анализа должны содержать не только частотную характеристику сигнала (распределение энергии сигнала по частотным составляющим), но и сведения о локальных координатах, на которых проявляют себя те или иные группы частотных составляющих или на которых происходят быстрые изменения частотных составляющих сигнала. По сравнению с разложением сигналов на ряды Фурье вейвлеты способны с гораздо более высокой точностью представлять локальные особенности сигналов, вплоть до разрывов 1-го рода (скачков). В отличие от преобразований Фурье, вейвлет-преобразование одномерных сигналов обеспечивает двумерную развертку, при этом частота и координата рассматриваются как независимые переменные, что дает возможность анализа сигналов сразу в двух пространствах.

Одна из главных и особенно плодотворных идей вейвлетного представления сигналов на различных уровнях декомпозиции (разложения) заключается в разделении функций приближения к сигналу на две группы: аппроксимирующую - грубую, с достаточно медленной временной динамикой изменений, и детализирующую - с локальной и быстрой динамикой изменений на фоне плавной динамики, с последующим их дроблением и детализацией на других уровнях декомпозиции сигналов. Это возможно как во временной, так и в частотной областях представления сигналов вейвлетами.

1.1. истоки Вейвлет - преобразования /4, 8, 10, 11/

Историческая справка. История спектрального анализа восходит к И. Бернулли, Эйлеру и Фурье, который впервые построил теорию разложения функций в тригонометрические ряды. Однако это разложение долгое время применялось как математический прием и не связывалось с какими-либо физическими понятиями. Спектральные представления применялись и развивались сравнительно узким кругом физиков–теоретиков. Однако, начиная с 20-х годов прошлого века, в связи с бурным развитием радиотехники и акустики, спектральные разложения приобрели физический смысл и практическое применение. Основным средством анализа реальных физических процессов стал гармонический анализ, а математической основой анализа - преобразование Фурье. Преобразование Фурье разлагает произвольный процесс на элементарные гармонические колебания с различными частотами, а все необходимые свойства и формулы выражаются с помощью одной базисной функции exp(jt) или двух действительных функций sin(t) и cos(t). Гармонические колебания имеют широкое распространение в природе, и поэтому смысл преобразования Фурье интуитивно понятен независимо от математической аналитики.

Преобразование Фурье обладает рядом замечательных свойств. Областью определения преобразования является пространство L2 интегрируемых с квадратом функций, и многие физические процессы в природе можно считать функциями, принадлежащими этому пространству. Для применения преобразования разработаны эффективные вычислительные процедуры типа быстрого преобразования Фурье (БПФ). Эти процедуры входят в состав всех пакетов прикладных математических программ и реализованы аппаратно в процессорах обработки сигналов.

Было также установлено, что функции можно разложить не только по синусам и косинусам, но и по другим ортогональным базисным системам, например, полиномам Лежандра и Чебышева, функциям Лагерра и Эрмита. Однако практическое применение они получили только в последние десятилетия ХХ века благодаря развитию вычислительной техники и методов синтеза цифровых линейных систем обработки данных. Непосредственно для целей спектрального анализа подобные ортогональные функции не нашли широкого применения из-за трудностей интерпретации получаемых результатов. По тем же причинам не получили развития в спектральном анализе функции типа "прямоугольной волны" Уолша, Радемахера, и пр.

Теоретические исследования базисных систем привели к созданию теории обобщенного спектрального анализа, которая позволила оценить пределы практического применения спектрального анализа Фурье, создала методы и критерии синтеза ортогональных базисных систем. Иллюстрацией этому является активно развивающаяся с начала 80-х годов прошлого столетия теория базисных функций типа вейвлет. Благодаря прозрачности физической интерпретации результатов анализа, сходной с "частотным" подходом в преобразовании Фурье, ортогональный базис вейвлетов стал популярным и эффективным средством анализа сигналов и изображений в акустике, сейсмике, медицине и других областях науки и техники.

Вейвлет-анализ является разновидностью спектрального анализа, в котором роль простых колебаний играют функции особого рода, называемые вейвлетами. Базисная функция вейвлет – это некоторое "короткое" колебание, но не только. Понятие частоты спектрального анализа здесь заменено масштабом, и, чтобы перекрыть "короткими волнами" всю временную ось, введен сдвиг функций во времени. Базис вейвлетов – это функции типа ((t-b)/a), где b - сдвиг, а – масштаб. Функция (t) должна иметь нулевую площадь и, еще лучше, равными нулю первый, второй и прочие моменты. Фурье-преобразование таких функций равно нулю при =0 и имеет вид полосового фильтра. При различных значениях масштабного параметра 'a' это будет набор полосовых фильтров. Семейства вейвлетов во временной или частотной области используются для представления сигналов и функций в виде суперпозиций вейвлетов на разных масштабных уровнях декомпозиции (разложения) сигналов.




Рис. 1.1.1.
Первое упоминание о подобных функциях (которые вейвлетами не назывались) появилось в работах Хаара (Haar) еще в начале прошлого века. Вейвлет Хаара - это короткое прямоугольное колебание на интервале [0,1], показанное на рис. 1.1.1. Однако он интересен больше теоретически, так как не является непрерывно дифференцируемой функцией и имеет длинные "хвосты" в частотной области. В 30-е годы физик Paul Levy, исследуя броуновское движение, обнаружил, что базис Хаара лучше, чем базис Фурье, подходит для изучения деталей броуновского движения.

Сам термин "вейвлет", как понятие, ввели в своей статье J. Morlet и A. Grossman, опубликованной в 1984 г. Они занимались исследованиями сейсмических сигналов с помощью базиса, который и назвали вейвлетом. Весомый вклад в теорию вейвлетов внесли Гуппилауд, Гроссман и Морлет, сформулировавшие основы CWT, Ингрид Добеши, разработавшая ортогональные вейвлеты (1988), Натали Делпрат, создавшая время-частотную интерпретацию CWT (1991), и многие другие. Математическая формализация в работах Mallat и Meyer привела к созданию теоретических основ вейвлет-анализа, названного мультиразрешающим (кратномасштабным) анализом.

В настоящее время специальные пакеты расширений по вейвлетам присутствуют в основных системах компьютерной математики (Matlab, Mathematica, Mathcad, и др.), а вейвлет-преобразования и вейвлетный анализ используются во многих областях науки и техники для самых различных задач. Многие исследователи называют вейвлет-анализ "математическим микроскопом" для точного изучения внутреннего состава и структур неоднородных сигналов и функций.

Не следует рассматривать вейвлет-методы обработки и анализа сигналов в качестве новой универсальной технологии решения любых задач. Возможности вейвлетов еще не раскрыты полностью, однако это не означает, что их развитие приведет к полной замене традиционных средств обработки и анализа информации, хорошо отработанных и проверенных временем. Вейвлеты позволяют расширить инструментальную базу информационных технологий обработки данных.

Преобразование Фурье (ПФ). В основе спектрального анализа сигналов лежит интегральное преобразование и ряды Фурье. Напомним некоторые математические определения.

В пространстве функций, заданных на конечном интервале (0,T), норма, как числовая характеристика произвольной функции s(t), вычисляется как корень квадратный из скалярного произведения функции. Для комплексных функций, квадрат нормы (энергия сигнала) соответствует выражению:

||s(t)||2 = s(t), s(t) =s(t) s*(t) dt, (1.1.1)

где s*(t) – функция, комплексно сопряженная с s(t).

Если норма функции имеет конечное значение (интеграл сходится), то говорят, что функция принадлежит пространству функций L2[R], R=[0,T], интегрируемых с квадратом (пространство Гильберта), и имеет конечную энергию. В пространстве Гильберта на основе совокупности ортогональных функций с нулевым скалярным произведением

v(t), w(t) =v(t) w*(t) dt = 0

может быть создана система ортонормированных "осей" (базис пространства), при этом любой сигнал, принадлежащий этому пространству, может быть представлен в виде весовой суммы проекций сигнала на эти "оси" – базисных векторов. Значения проекций определяются скалярными произведениями сигнала с соответствующими функциями базисных "осей".

Базис пространства может быть образован любой ортогональной системой функций. Наибольшее применение в спектральном анализе получила система комплексных экспоненциальных функций. Проекции сигнала на данный базис определяются выражением:

Sn = (1/T)s(t) exp(-jnt) dt, n  (-∞, ∞), (1.1.2)

где =2/T – частотный аргумент векторов. При известных выражениях базисных функций сигнал s(t) однозначно определяется совокупностью коэффициентов Sn и может быть абсолютно точно восстановлен (реконструирован) по этим коэффициентам:

s(t) =Sn exp(jnt). (1.1.3)

Уравнения (1.1.2) и (1.1.3) называют прямым и обратным преобразованием Фурье сигнала s(t). Любая функция гильбертова пространства может быть представлена в виде комплексного ряда Фурье (1.1.3), который называют спектром сигнала или его Фурье-образом.

Ряд Фурье ограничивается определенным количеством членов N, что означает аппроксимацию с определенной погрешностью бесконечномерного сигнала N – мерной системой базисных функций спектра сигнала. Ряд Фурье равномерно сходится к s(t):

||s(t) -Sn exp(jnt)|| = 0. (1.1.4)

Таким образом, ряд Фурье - это разложение сигнала s(t) по базису пространства L2(0,T) ортонормированных гармонических функций exp(jnt) с изменением частоты, кратным частоте первой гармоники 1=. Отсюда следует, что ортонормированный базис пространства L2(0,T) построен из одной функции exp(jt) = cos(t)+j·sin(t) с помощью масштабного преобразования независимой переменной.

Для коэффициентов ряда Фурье справедливо равенство Парсеваля сохранения энергии сигнала в различных представлениях:

(1/T)|s(t)|2 dt =|Sn|2. (1.1.5)

Разложение в ряд Фурье произвольной функции y(t) корректно, если функция y(t) принадлежит этому же пространству L2(0,T), т.е. квадратично интегрируема с конечной энергией:

|y(t)|2 dt <  , t  (0,T), (1.1.6)

при этом она может быть периодически расширена и определена на всей временной оси пространства R(-, ) так, что

y(t) = y(t-T), t  R,

при условии сохранения конечности энергии в пространстве R(-, ).

С позиций анализа произвольных сигналов и функций в частотной области и точного восстановления после преобразований можно отметить ряд недостатков разложения сигналов в ряды Фурье, которые привели к появлению оконного преобразования Фурье и стимулировали развитие вейвлетного преобразования. Основные из них:

  • Ограниченная информативность анализа нестационарных сигналов и практически полное отсутствие возможностей анализа их особенностей (сингулярностей), т.к. в частотной области происходит «размазывание» особенностей сигналов (разрывов, ступенек, пиков и т.п.) по всему частотному диапазону спектра.

  • Гармонические базисные функции разложения не способны отображать перепады сигналов с бесконечной крутизной типа прямоугольных импульсов, т.к. для этого требуется бесконечно большое число членов ряда. При ограничении числа членов ряда Фурье в окрестностях скачков и разрывов при восстановлении сигнала возникают осцилляции (явление Гиббса).

  • Преобразование Фурье отображает глобальные сведения о частотах исследуемого сигнала и не дает представления о локальных свойствах сигнала при быстрых временных изменениях его спектрального состава. Так, например, преобразование Фурье не различает стационарный сигнал с суммой двух синусоид от нестационарного сигнала с двумя последовательно следующими синусоидами с теми же частотами, т.к. спектральные коэффициенты (1.1.2) вычисляются интегрированием по всему интервалу задания сигнала. Преобразование Фурье не имеет возможности анализировать частотные характеристики сигнала в произвольные моменты времени.



следующая страница >>