uzluga.ru
добавить свой файл
1 2


Тема: Определение квадратного уравнения. Неполные квадратные уравнения и их решения.

Цель:

  • Ввести понятия квадратного уравнения, неполного квадратного уравнения. Сформировать умения различать квадратные уравнения, определять коэффициенты квадратного уравнения и по ним определять вид квадратного уравнения. Сформировать умения и навыки решения неполных квадратных уравнений.

  • Развивать логическое мышление.

  • Воспитывать трудолюбие, развивать самостоятельность.


Ход урока

  1. Орг. момент.

Чтобы спорилось нужное дело,

Чтобы в жизни не знать неудач,

В алгебры мир отправимся смело,

В мир примеров и разных задач.

А девизом нашего урока буду такие слова:

Думать - коллективно!

Решать - оперативно!

Отвечать - доказательно!

Бороться - старательно!

И открытия нас ждут обязательно!

  1. Мотивация урока. Постановка целей и задач урока.

Ребята, мы приступаем к изучению новой главы «Квадратные уравнения». Эта тема очень важна тем, что в результате ее изучения вы овладеете новым математическим аппаратом решения уравнений, позволяющим решать многообразные задачи не только математические. С помощью квадратных уравнений решаются текстовые задачи различных видов, находятся корни квадратного трехчлена, нули квадратичной функции ( 9кл.), находятся критические точки при исследовании функций (10кл.), решаются показательные, тригонометрические, логарифмические уравнения, приводимые к квадратным (11кл.). Применяются в курсе физики по теме «Равноускоренное движение. Падение тел». Учащиеся ставят свои цели и задачи урока и сопоставляют их с целями и задачами, которые ставит на урок учитель.

  1. Актуализация опорных знаний.

Выполнение устных упражнений.

  1. Представить в виде многочлена выражения:

(х-2)(2+х); (х-3)2; 3-у).у; (у-1)(у+2),

  1. Что такое уравнение?

  2. Что значит решить уравнения?

  3. Какие уравнения вы знаете?

  4. Равносильны ли уравнения:

3х-2=х+3 и 2х-5=0

0,5х-3=0 и х-6=0

Ответы обосновать.

  1. Решить уравнения:

а) х2=64; б) х2-144=0; в) х2+25=0; г) (х-1)2=9; д) (х+5)2=0.


4. Объяснение нового материала.

Задача 1. Одна сторона прямоугольника больше другой на 2 см., а площадь равна . Найти стороны прямоугольника.

Решение: х см- ширина; (х+2)см-длина; х(х+2)=15; +2х=15.

Учащиеся останавливаются на данном шаге. Не могут решить уравнение.

В связи с этим, какая задача возникает перед нами? (Найти способ решения данных уравнений и выяснить, что это за уравнение)

Как мы будем его решать?

Определение. Квадратным уравнением называется уравнение вида ах2+bx+c=0, где a,b и c произвольные числа, причем а≠0.

Числа a,b,c – это коэффициенты квадратного уравнения. Число а называют первым или старшим коэффициентом, b-вторым коэффициентом, а c-свободным числом.

Квадратное уравнение, первый коэффициент которого равен 1, называют приведенным.

Например, х2-12х+20=0, х2-2/3х=0, х-√50=0.

Квадратное уравнение, у которого первый коэффициент, неравен 1, можно привести к приведенному, разделив обе части уравнения на коэффициент при х2.

Первые упоминания о способах решения уравнений, которые мы сейчас называем квадратными относятся во второму тысячелетию до н.э. Это эпоха расцвета Вавилонии и Древнего Египта. Первое тысячелетие н.э. – Римские завоевательные войны. К этому периоду относится творчество Диофанта. Его трактат “Арифметика” содержит ряд задач, решаемых при помощи квадратных уравнений. В IX веке узбекский математик Аль-Хорезми в Трактате “Алгебра” классифицирует квадратные уравнения. Для нас это время знаковое тем, что приблизительно в это время образуется древнерусское государство Киевская Русь. Все это время отличные по записи уравнения считались различными. Не было единого подхода к их решению. И только в XVI веке французский юрист, тайный советник короля Франции и математик Франсуа Виет впервые вводит в обращение буквенные обозначения не только для неизвестных величин, но и для данных, то есть коэффициентов уравнения. Тем самым заложил основы буквенной алгебры.


  1. Закрепление материала.

Устные упражнения.

  1. Работа по карточкам.

Покажите с помощью стрелок связь между коэффициентами неполного квадратного уравнения.



Ответы учащиеся проверяют с помощью взаимопроверки.



  1. Работа с учебником: № 572, 573, 579- устно.


Письменное решение уравнений.

  1. Работа с учебником.

№ 575, 577, 582, 584, 589– коллективное решение

  1. Самостоятельная работа.

Выполнение теста.

Какое из данных уравнение является квадратным?




  1. А) 3х2-5х=х-3;

Б) 7x+11=0;

В) x(x-l)=x2-2x;

Г)(х-7):х=0.


  1. А) 3x=2;

Б) 7x2=9x+12;

В) x(x+3)=x2-2x;

Г) (х+1):х=0


Выпишите коэффициента а,b, c из квадратного уравнения:


x2+2x+7=0. 3x2-5x-2=0 x2-81=0

А)4,
Б)4,
В)4,
Г)4,

  1. Рефлексия. Домашнее задание.

    • Какие уравнения называются квадратными? Приведите пример.

    • Как называются коэффициенты квадратного уравнения?

    • Какие квадратные уравнения называются приведенными?

    • Как привести квадратное уравнения к приведенному?

- Какую цель мы поставили в начале урока?

-Мы достигли цели?

-Какие знания, полученные ранее, нам позволили «открыть» новое знание?

-Проанализируйте результат своей работы.

  1. Выучить теоретический материал, параграф 17.

  2. Письменно № 574, 578, 583, 585(1), 590(1).

  3. Повторить упражнения на выделение полного квадрата двучлена.


Тема: Формула корней квадратного уравнения.

Цель урока:

  • Ввести понятие дискриминанта и исследовать коэффициенты квадратного трехчлена.

  • Развивать познавательную активность учащихся и логическое мышление.

Последовательно формировать у учащихся умение выдвигать гипотезы, аргументировано доказывать их.

  • Воспитывать трудолюбие, развивать самостоятельность.


Ход урока

  1. Орг. момент.

«Уравнение представляет собой наиболее

серьёзную и важную вещь в математике». Лодж О.

  1. Мотивация урока. Постановка целей и задач урока.

Не всегда уравненья

Разрешают сомненья

Но итогом сомненья

Может быть озаренье.

  1. Актуализация опорных знаний. Проверка д/з.

Устный опрос.

  1. Что такое уравнение?

  2. Что значит решить уравнение?

  3. Что такое корень уравнения?

  4. Какое уравнение называется квадратным?

  5. Почему коэффициент а не может равняться нулю?

  6. Какие существуют квадратные уравнения?

  7. Как получаются неполные квадратные уравнения?

  8. Как называются числа а, в, с?

  9. Какие уравнения называются неполными квадратными уравнениями?

  10. Сколько корней может иметь уравнение каждого вида?

«Проверь себя»


На доске задания: http://festival.1september.ru/articles/508994/img11.gif

Задание №1

Выпишите под какими номерами
стоят квадратные уравнения?

Задание №2
Дайте характеристику каждого квадратного уравнения.

Задание №3
Сколько корней имеет уравнение 4), 6), 7), 9)?







  1. Изучение нового материала.


Учащимся предлагаются несколько уравнений.

2x2+x+3=0 и 2x2-x+3=0

2x2-x-3=0 и 2x2+x-3=0

3x2-6x+3=0 и 3x2+6x+3=0

  • Какие из следующих уравнений, на ваш взгляд, имеют корни, а какие – не имеют корней. Можете ли вы ответить на этот вопрос, не решая уравнений?

(ответ детей)

Как вы думаете, количество корней квадратного уравнения определяется:

- одним коэффициентом;
- двумя коэффициентами;
- тремя коэффициентами;
- некоторым выражением, составленным из коэффициентов?

(дискуссия детей)

Чтобы правильно ответить на эти вопросы, решим данные уравнения.

Да, вы правы, число корней квадратного уравнения ax2+bx+c=0 зависит от выражения составленного из коэффициентов этого уравнения. Что это за выражение? Как оно влияет на количество корней? Проанализируем формулу корней квадратного уравнения.

рисунок 1

1. Если b2-4ac >0, то квадратное уравнение имеет два различных действительных корня.
2. Если b2-4ac =0, то квадратное уравнение имеет два совпадающих действительных корня.
3. Если b2-4ac <0, то квадратное уравнение не имеет действительных корней.

Ответь на вопросы:

- Влияет ли знак второго коэффициента на количество корней квадратного уравнения?
- Верно ли, что если в квадратном уравнении коэффициенты a и с имеют противоположные знаки, то это уравнение обязательно имеет два различных корня.
- Что вы можете сказать о количестве корней квадратного уравнения, у которого коэффициенты а и с одного знака.

Выполняя задание, вы, конечно, обратили внимание на то, что “различителем” числа корней квадратного уравнения является выражение b2- 4ас.

Ему дано специальное имя – дискриминант (от discriminantis – по латыни “различающий”, “разделяющий”).

Дискриминант обозначается буквой D:

D= b2- 4ас

А в толковом математическом словаре (дети смотрят сами) дискриминант квадратного трёхчлена – величина, определяющая характер его корней.

Что общего между понятием “светофор” и “дискриминант”? рисунок 2

(Отвечая, дети подходят по очереди к светофору и вставляют карточку на место нужного цвета).


Теперь формулу корней квадратного уравнения можно записать так:

рисунок 3

А теперь, ребята, помогите составить ещё один алгоритм решения квадратного уравнения

(Дети сами составляют алгоритм).


АЛГОРИТМ

1. Выделить в квадратном уравнении коэффициенты.
2. Вычислить дискриминант D.
3. Если D<0, то уравнение не имеет действительных корней.

Если D>или=0, то вычислить корни по формуле.

рисунок 3

  1. Закрепление нового материала.

Решить № 612, 613, 615(1-6).

Задание достаточного уровня:

1) х2 + 2х – 80 = 0;

2) 4х2 + 4х + 1 = 0;

3) 3у2 – 3у + 1 = 0.

Задание высокого уровня:

1) 5х2 = 9х + 2;

2) (х + 4 )2 = 3х + 40;

3) (3х – 1)(х + 3) =х(1 + 6х).

6. Упражнение «Чудо-нос».

После слов «задержу дыхание» учащиеся делают вдох и задерживают дыхание. Учитель читает стихотворный текст, ребята только выполняют задание.

Выполним задание,

Задержим дыхание.

Раз, два, три, четыре –

Снова дышим:

Глубже, шире…

глубоко вдохнули.

спину потянули,

руки вверх подняли

радугу нарисовали

повернулись на восток,

продолжаем наш урок.

7. Самостоятельная работа.

Тест:

1) Найти дискриминант уравнения
1. 2+3у+1=0. 2. 2+5у+2=0.

А) 11; Б) 17; А) 41; Б) 9;

В)-5; Г)1. В)-11; Г) 21.

3. х2-6х+5=0. 4. х2-7х+12=0.

А) 16; Б) -56; А) -1; Б) -97;

В)-16; Г)56. В)1; Г) 97.

2) Сколько корней имеет уравнение?
1. х2-9х+14=0? 2. х2-8х+15=0?

А) два; Б) один; А) два; Б) один;

В)не имеет корней; В)не имеет корней;

Г)множество. Г) множество

3. 2+х+2=0? 4. Зх2+х+4=0?
А) два; Б) один; А) два; Б) один;

В) не имеет корней; В) не имеет корней;

Г) множество. Г) множество.

8. Рефлексия.



Составьте, пожалуйста «Сенкан»-один из жанров поэзии

1 строчка – квадратное уравнение;

2 строчка – 2 прилагательных;

3 строчка – 3 глагола;

4 строчка – предложение, выражающее личное отношение.

9. Подведение итогов урока. Д/з.

Итак, сегодня на уроке мы с вами познакомились с формулой корней квадратного уравнения, научились решать эти уравнения.

Выучить п.18, решить № 614, 616(1-6).


Тема: Приведенное квадратное уравнение, формула его корней.


Цель урока:

  • Отработать умения и навыки решения квадратных уравнений с использованием формул корней, Ознакомить учащихся с теоремой Виета и ее доказательством.

  • Развивать логическое мышление, умения правильно оперировать полученными знаниями, логически мыслить;

  • Воспитывать трудолюбие, развивать самостоятельность.


Ход урока:


1. Орг. момент.

2.Мотивация урока. Постановка целей и задач урока.

Здравствуйте, ребята.

Среди наук из всех главнейших
Важнейшая всего одна.
Учите алгебру, она глава наукам,
Для жизни очень всем нужна,

Когда достигнешь ты наук высоты,
Познаешь цену знаниям своим,
Поймешь, что алгебры красоты,
Для жизни будут кладом не плохим.

3.Актуализация опорных знаний. Проверка д/з.

Устный опрос.

На доске записаны уравнения:

1)х2 + 2х – 8 = 0;

2) 2х2 + 5х = 0;

3) 3х2 = 0;

4) 2х2 + 3х – 8 = 0;

5) х2 – 5х + 1 = 0;

6) 6х2 + 12 = 0.

Вопросы:

  1. Какие уравнения записаны на доске?

  2. Какие уравнения называются квадратными?

  3. Прочтите полные квадратные уравнения.

  4. Какие уравнения называются полными?

  5. Как называются уравнения, у которых первый коэффициент равен 1? Приведите примеры.

  6. Какое выражение называется дискриминантом?

  7. Сколько корней может иметь квадратное уравнение? От чего это зависит?

  8. Как называются уравнения под цифрами 2; 3; 6? Почему?

  9. Как решаются уравнения под цифрой 2?

  10. Чему равен х в уравнении под цифрой 3?

  11. Что можно сказать о решении уравнения под цифрой 6?

Проверка домашнего задания.

Проверка в парах. Ученики меняются тетрадями и проверяют задания по готовому решению, оформленному на доске одном из учеников.

Математический диктант

(задания для второго варианта даны в скобках).

Двое решают на разворотах доски:

1. Запишите квадратное уравнение, у которого первый коэффициент равен 3 [- 5], второй коэффициент равен - 5 [3], а свободный член равен 2.
2. Запишите неполное квадратное уравнение, у которого первый коэффициент равен 3 [5], второй – 7 [3], и решите его.
3. Найдите дискриминант квадратного уравнения 3x2 – 8x – 3 = 0,
[5y2 – 6y +1 = 0].
4. Сколько корней имеет это уравнение?
5. При каком условии квадратное уравнение не имеет корней? [имеет два одинаковых корня?]

На доске одновременно решаются первые три уравнения, затем следующие три. Решения разбираются. Слабые ученики работают по карточкам.

Работа по карточкам.

Дано уравнение 3х2 – 7х + 4 = 0.

  1. Запиши, чему равны а, в, с.

  2. Найди, чему равен дискриминант Д.

  3. Найди по формуле, чему равны х1 и х2.

  4. Запиши ответ.

Аналогично решаются уравнения:

2 – 6у + 1 = 0;

2 – 9у + 10 = 0;

у2 – 10у – 24 = 0.

Решить № 615(19, 20), 619(2), 622.

4. Изучение нового материала.

Франсуа Виет”.

Это имя великого французского математика. С этим именем связанна тема этого урока. Франсуа Виет – французский математик, живший в 16 веке. Он родился в 1540 году в небольшом городке на юге Франции. Он обладал огромной трудоспособностью, мог работать по трое суток без отдыха. Он был одним из первых, кто ввел систему алгебраических символов, разработал основы элементарной алгебры. Многие его результаты и открытия достойны восхищения. Свою знаменитую теорему, которую мы рассмотрим сегодня, он доказал в 1591 году. Это теорема выражает интересную закономерность, существующую между суммой корней квадратного уравнения и его коэффициентами, между произведением корней квадратного уравнения и его коэффициентами.

Х2+6х-7=0

Чтобы увидеть эту закономерность, обратимся к уравнению (1), которое решено на доске первым учеником. Чему равна сумма корней.

Х12= -7+1= -6

Давайте, сравним это число с коэффициентами уравнения! Вы видите, что оно равно второму коэффициенту уравнения 1,взятому с противоположным знаком.

Посмотрим, чему равно произведение корней?

Х12= -7*1= -7

С каким коэффициентом уравнения его удобно сравнить?

Какой вывод можно сделать?

Теперь найдем сумму корней и произведение корней уравнения (2), которое решено на доске вторым учеником, и сравним эти числа с коэффициентами уравнения.

Теорема. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Формулировка теоремы повторяется учениками.

Доказательство.

Пусть X1 и X2 – корни квадратного уравнения x2+px+g=0

http://festival.1september.ru/articles/507011/image2928.gif; http://festival.1september.ru/articles/507011/image2929.gif;

Найдем, http://festival.1september.ru/articles/507011/image2930.gif

Найдем, http://festival.1september.ru/articles/507011/image2931.gif

Уравнение 3 не приведенное, поэтому, для нее эта закономерность не выполняется. Но если уравнение заменить равносильным ему приведенным, то можно увидеть, что

http://festival.1september.ru/articles/507011/image2932.gif

Теореме Виета посвящены такие строки:

По праву достойна в стихах быть воспета

О свойстве корней Теорема Виета.
Что лучше, скажи, постоянства такого?
Умножишь ты корни и дробь уж готова
В числителе “С”, в знаменателе “А”.
А сумма корней тоже дроби равна
Хоть с минусом дробь – это что за беда?
В числителе “В”, в знаменателе “А”.


следующая страница >>