uzluga.ru
добавить свой файл


Тригонометрические функции

Работу выполнили: Никониров Иван

Шахнович Егор

Определение тригонометрических функций для острых углов

  • Тригонометрические функции острого угла определяются как отношения сторон прямоугольного треугольника. Пусть OAB — треугольник с углом α. Тогда:

  • Синусом α называется отношение AB/OB (противолежащего катета к гипотенузе)

  • Косинусом α называется отношение ОА/OB (прилежащего катета к гипотенузе)

  • Тангенсом α называется отношение AB/OA (отношение противолежащего катета к прилежащему)

  • Котангенсом α называется отношение ОА/AB (отношение прилежащего катета к противолежащему)

  • Секансом α называется отношение ОB/OA (гипотенузы к прилежащему катету)

  • Косекансом α называется отношение ОB/AB (гипотенузы к противолежащему катету)



Определение тригонометрических функций как решений функциональных уравнений

  • Функции косинус и синус можно определить как непрерывные решения (f и g соответственно) системы функциональных уравнений:



Значения тригонометрических функций для некоторых углов



Простейшие тождества

  • Так как синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α то, согласно уравнению единичной окружности или теореме Пифагора, имеем:

  • Деля это уравнение на квадрат косинуса и синуса соответственно имеем далее:



Чётность

  • Косинус — чётная. Остальные функции — нечётные, то есть:



Периодичность

  • Функции y = sin α, y = cos α,периодические с периодом 2π. Функции: y = tg α, y = ctg α — c периодом π.

  • Периодическая функция ― функция, повторяющая свои значения через какой-то ненулевой период, то есть не меняющая своего значения при добавлении к аргументу фиксированного ненулевого числа (периода).



График функции y = sin x



График функции y = cos x



График функции y = tg x



График функции y = ctg x



Формулы приведения тригонометрических функций



Спасибо за внимание!!!

  • Спасибо за внимание!!!