uzluga.ru
добавить свой файл


Золотое сечение

  • Презентацию разработала Родионова Надежда Владимировна

  • Учитель математики, ГОУ Гимназия № 157, г. Санкт-Петербург


Золотое сечение

  • Сегодня мы познакомимся с необычной пропорцией, называемой золотым сечением и даже “божественной пропорцией”.

  • Вы узнаете какую роль играет эта пропорция в окружающем мире, как она связана с понятием гармонии и как и почему она используется в искусстве (живописи, архитектуре, фотографии…), дизайне…



Золотое сечение в живописи, фотографии, дизайне. Основы композиции

В живописи, фотографии, дизайне золотое сечение очень часто используется в виде классических приемов композиции, о чем вы можете прочитать, заглянув на любой сайт, посвященный этим видам искусства.]

Основная рекомендация заключается в следующем. Объект, являющийся центральной фигурой в композиции, далеко не всегда должен располагаться в центре. Определенные точки в композиции автоматически привлекают внимание. Таких точек 4, и расположены они на расстоянии 3/8 и 5/8 от краев картины. Нарисовав сетку, получим эти точки в местах пересечения линий (см. фотографию).

Золотое сечение. История вопроса.

Под золотым сечением понимается такое пропорциональное деление отрезка на неравные части. При котором длина всего отрезка так относится к его большей части, как длина большей части относится к длине меньшей.

Это отношение равно иррациональному числу Ф=1.618033989..

Впервые золотое сечение встречается в «Началах» Евклида (300 лет до н.э.). Лука Пачоли, современник Леонарда да Винчи, назвал его «божественной пропорцией».

Золотое сечение обозначают символами PHI или Ф (в честь древнегреческого скульптора Фидия, всегда использовавшего в своих работах золотое сечение).

Математик Фибоначчи впервые получил последовательность чисел, названной в его честь числами Фибоначчи 1,1,2,3,5,8,13,21,34,55 …

Особенностью этого числового ряда является то, что каждый его член, начиная с третьего, равен сумме двух предыдущих : 1+1=2; 1+2=3; 2+3=5; 3+5=8 …При этом отношение двух соседних членов равно золотому сечению, т.е. числу Ф.

Рассматривая закономерности, связанные с проявлением золотого сечения, обычно используют обратную величину числа Ф : 1/1,618 = 0,618

Золотая спираль

Вопрос: Что общего в расположении полипептидных цепей нуклеиновых кислот, лепестков розы, раковин моллюсков, рогов млекопитающих, подсолнуха, далеких космических галактик?

Ответ: в основе их структуры лежит золотая (логарифмическая) спираль. Эта спираль вписывается в золотой прямоугольник (отношение длины и ширины которого равно числу Ф). Последовательно отрезая от него квадраты и вписывая в каждый из них по четверти окружности, мы и получим золотую спираль (см. фото)

Золотая спираль



Золотая спираль Явление филлотаксиса



Золотое сечение в искусстве Архитектура

Золотое сечение пронизывает всю историю искусства: пирамиды Хеопса, знаменитый греческий храм Парфенон, большинство греческих скульптур памятников, непревзойденная Джоконда Леонарда да Винчи, картины Рафаэля, Шишкина, этюды Шопена, музыка Бетховена, Чайковского, стихи Пушкина … вот далеко не полный перечень выдающихся произведений искусства, наполненных чудесной гармонией основанной на золотом сечении.

Пропорции тела человека и золотое сечение

Идеальным, совершенным считается тело, пропорции которого составляет золотое сечение. Основные пропорции были определены Леонардо да Винчи, и художники стали сознательно их использовать.

Основное деление человеческого тела – это деление точкой пупа. Отношение расстояния от пупа до ступни к расстоянию от пупа до макушки составляют золотое сечение.

Идеальной женской фигурой считается фигура Афродиты Милосской (см. рисунок).

Пропорции золотого сечения в природе

Форма птичьих яиц описывается золотым сечением. Сегодня уже установлено, что при такой конфигурации прочностные характеристики оболочки оказываются наиболее высокими.

Совершенная форма тела стрекозы создана по законам золотого сечения: отношение длины хвоста и корпуса равно отношению общей длины к длине хвоста.

Практические задания

  • 1. Разделите отрезок длиной 16 см в отношении “золотого сечения”. Используйте числа Фибоначчи

1 вариант – 3 и 5

2 вариант - 2 и 3
  • 2. Длина прямоугольника равна 20 см (1 вариант), 15 см(2 вариант). Найдите такую ширину прямоугольника, чтобы отношение длины к ширине составило “золотое сечение” Ф=1,6

Решите задачу, составив уравнение
  • 3. Проверьте, насколько идеально одно из отношений вашей ладони: отношение длины указательного пальца к длине двух его фаланг от конца пальца.

Измерьте с помощью линейки указанные длины и найдите их отношение. Округлите полученное число до десятых и сравните с Ф=1,6 (определите, насколько оно больше или меньше числа Ф )